非平衡現象を利用した細孔体合成と未知構造解析

Porous materials syntheses at non-equilibrium condition and the ab initio structure determination

(日本結晶学会推薦)

代表研究者	東京工業大学	河野	正規	Tokyo Institute of Technology	Masaki KAWANO
協同研究者	東京工業大学	大津	博義	Tokyo Institute of Technology	Hiroyoshi OHTSU

Kinetic assembly of coordination networks under non-equilibrium conditions can generate interactive pores in principle. Although such kinetic products did not attract much attention because of thermal instability, sometimes kinetic coordination networks can be very stable in a solid state. Indeed, an interactive site in a pore plays a crucial role in emerging functionality as a porous material. In order to investigate the properties of interactive pores, we prepared thermodynamic/kinetic coordination networks using labile CuX units (X = I, Br) and a rigid pyridyl ligands. We report the first direct observation of disulphur (S₂) with X-ray crystallography. Sulphur-gas was kinetically trapped and frozen into the pores of two Cu-based porous coordination networks containing interactive iodide sites. Stabilization of S₂ was achieved either through physisorption or chemisorption on iodide atoms. In the second network, however, the S₂ molecules reacted further to produce bent-S₃ species as the temperature was increased. Following the thermal evolution of the S₂ species in this network with X-ray diffraction and Raman spectroscopy unveiled the generation of a new reaction intermediate never observed before, cyclo-trisulphur dication (cyclo-S₃²⁺). We envisage kinetic guest trapping in interactive crystalline porous networks as a promising method to investigate transient chemical species.

研究目的

本研究の目的は、自然界が非平衡現象を利用して 高次な機能を発現していることに着目し、非平衡系 でのものづくりを行うことである。従来、細孔性ネ ットワーク錯体は、その設計性・高機能性から新材 料として期待されているものの、ほとんど平衡系で 作られてきた。そこで、革新的な細孔空間の構築の ためには、新たな方法論が必要である。非平衡系で は、原理的に最安定構造が形成される前に速度論的 に骨格が組みあがるため、通常よりホスト骨格内の 分子間相互作用の少ない構造が必然的に生成する。 結果として、より大きな細孔が生成し、かつ細孔体 の特性を決定付ける細孔表面に相互作用を有する部 位を露出させることができるため、従来法では達成 できなかった機能性細孔空間を創生できる。非平衡 生成物の科学は、構造解明が困難なため、いまだ未 開拓の領域であり、大きなブレークスルーが期待さ れる。

研究経過

申請者は、本原理を立証するために銅ハロゲンキ ュバン型錯体と堅牢なメタン型4座ピリジン配位子 を用いて速度論的に細孔性ネットワーク錯体を選択 的に合成することを検討した。銅ハロゲンキュバン 型錯体の銅ハロゲンユニットは溶液中で速度論的に 結合の組み換えが容易に起こることから、溶液状態 で様々な骨格を形成する。たとえば、ヨウ化銅キュ バン型錯体とメタン型配位子を速度論的にネットワ ーク化することで相互作用部位であるハロゲンが細 孔(細孔径約6Å)内に露出したモノポーラス型ネ ットワーク錯体を狙い通り選択的に生成させること に成功している(Fig. 1)。一方、熱力学的生成物には より小さな細孔(細孔径約4Å)が形成され、また、 細孔内に相互作用部位であるハロゲンが露出してい ないことを明らかにした。¹

Fig. 1 Reaction scheme and crystal structures of CuI network structures. Right, kinetic CuI network; left, thermodynamic CuI network.

今回、臭化銅キュバン型錯体とメタン型配位子を 用いてネットワークの形成を検討したところ、ヨウ 化銅キュバン型錯体を用いた時とは全く異なる細孔 性ネットワーク錯体が得られた。熱力学的生成物と して、ヨウ化銅錯体の速度論的生成物と同形構造の 細孔性ネットワーク錯体が得られ、速度論的生成物 としては、新規バイポーラス型ネットワーク錯体が 得られた(Fig. 2)。細孔内には、Cu2Br2ユニットの架 橋臭素が細孔内に面していることが分かった。この ネットワーク錯体も選択的に合成することが可能で、 脱溶媒しても細孔性を保持できることを見出した。 また、ヨウ化銅ネットワーク錯体とは異なり、銅が 二価に酸化できることを見出した。現在、酸化体の 構造を検討中である。

相互作用の有無による細孔の特性の違いを評価す るために、ヨウ化銅ネットワーク錯体を用いたヨウ 素の吸着実験を以前報告した。熱力学的ネットワー ク錯体は、450 K まで、速度論的ネットワーク錯体 は 380 K までヨウ素を細孔内に保持でき、優れたヨ

Fig. 2 Crystal structure of kinetic CuBr network.

ウ素吸着材として機能することを明らかにした。X 線構造解析により、それぞれの細孔は細孔のキャピ ラリー効果(物理吸着)と相互作用部位との結合形 成(化学吸着)により、昇華性のあるヨウ素を高い 温度まで保持できることを明らかにした。そこで今 回、それぞれの細孔の特性を解明するために、反応 性に富む硫黄小分子を非平衡下で捕捉し、その逐次 反応をX線回折により直接観察することにより検討 した。硫黄粉末とそれぞれの細孔性ネットワーク錯 体を Z 型ガラス管にそれぞれ離してセットし、真空 下で封入した。ネットワーク錯体の結晶は300 K に 保ち、硫黄粉末をガスバーナーで熱分解することで 反応性に富む硫黄小分子の蒸気を生成し、室温で細 孔への捕捉を行った。熱力学的ネットワーク錯体の 場合、室温で硫黄ガスを捕捉した後、高エネルギー 加速研究機構の AR-NW2A のビームラインの単結晶 X線回折装置に単結晶をセットし20Kまで冷却し回 折データの測定を行った。その結晶構造解析の結果、 分子状のS2が激しく乱れた状態で捕捉されているこ とを明らかにした(Fig. 3)。これは S₂を単離した世 界で初めて例であり、S2の姿をX線により直接観察 した初めての例である。

Fig. 3 Crystal structure of (a) desolvated and (b) sulfur trapping thermodynamic CuI network

一方、速度論的ネットワーク錯体を利用した場合、 同様に室温で硫黄ガスを捕捉した後、韓国、ポハン 加速器研究所の 2D ビームラインの単結晶 X 線回折

装置に単結晶をセットし250Kまで冷却後X線回折 データを測定した。その後 300 K、350 K、400 K、 300 Kと温度を変化させ、それぞれの温度で X線回 折データを測定し、逐次反応を直接観察した。250K と 300 K の結晶構造解析の結果を Fig. 4 に示す。250 K では分子状の bent-S₃ と S₂が観測された。bent-S₃ は物理吸着により捕捉され、S2は Fig.4a のように物 理吸着しているものだけでなく、Fig4bのように細孔 内の相互作用部位である銅を架橋しているヨウ素と I-S 結合を形成しているものも得られることを明ら かにした。I-S2 結合はこれまで報告例がなく、X 線 構造解析により確認された初めての例である。300K に昇温することによりヨウ素上に化学吸着された So が逐次反応を示し、ヨウ素上に硫黄の三角形リング が形成されていることを確認した。cyclo-S3 が存在す る可能性は理論計算により示唆されていたが、これ まで実験による報告例は皆無である。

Fig. 4 Crystal structures of sulfur trapping CuI networks: (a), (b) $S_2 \& S_3 @$ kinetic CuI network at 250 K, (b): chemisorbed- S_2 and (c) 300 K.

300 K からさらに昇温することにより最終的にはす べての硫黄化学種はより安定な bent-S₃ に転換され ることを明らかにした。

考察

今回観測した硫黄化合物について考察するために、 赤外吸収分光法およびラマン分光法により化学種の 同定を行った。はじめに熱力学的ヨウ化銅ネットワ ーク錯体に捕捉されたS2の存在を確認するために赤 外吸収スペクトルを測定したところ、予想通りシグ ナルの変化が見られず IR 不活性であった。そこで、 蛍光を避けるために近赤外線領域(830 nm)で励起し たラマン散乱スペクトルを測定したところ、S2に相 当するラマンバンドを 728 cm⁻¹に観測したことから、 確かに物理吸着によりS2が細孔内に捕捉されている ことを確認した。一方、速度論的ヨウ化銅ネットワ ーク錯体に捕捉された硫黄の電子状態を調べるため に同様に IR・ラマンスペクトルの測定を行い、密度 汎関数法により構造最適化・HF エネルギーの計算を 行い、振動状態の帰属を行った。まず、250 K で観 測された I-S2の構造最適化に成功し、一重項状態の S2がIと結合できることを確認した。それに対し、 300 K で観測されたリング状の S₃ が架橋ヨウ素に結 合すると仮定して計算を行ったところ計算が収束し なかったことから中性のS3が架橋ヨウ素と結合を形 成しているという仮説が否定された。そこで、様々 な硫黄の酸化状態を仮定して計算を行ったところ、2 電子酸化体である cyclo-S₃²⁺が結合を形成している と解明した。X 線構造解析で決定された結合距離・ 角度および振動スペクトルとも非常に良い一致を示 したことから、その場観察 X 線構造解析により見出 された新しい化学種は I-cyclo-S₃²⁺であると同定した。 この化学種は今まで報告例がないが、S₃²⁺と等電子構 造である S₂Siの存在は分光学的にすでに同定されて いることから妥当な結果といえる。今回の結果は、 分光法だけでは予測することが極めて困難であり、 X 線構造解析により分子の形を直接見ることにより はじめて発見することができた成果である。その場 観察法により反応を直接観測する研究の重要性を示 唆した結果である。

硫黄化学種 bent-S₃の同定に関して、以前相互作用 部位を有する細孔性ネットワーク錯体の微結晶粉末 を用いて硫黄ガスを捕捉し、粉末回折による非経験 的構造解析によりS₃が選択的に捕捉されていること を報告したが、²今回より確度の高い単結晶 X 線構 造解析により改めて bent-S₃の存在を確認すること ができた。この事実は、回折点が激しく重なり合っ てしまう粉末 X線回折データを用いた未知構造解析 でも新しい化学種の発見が可能であることを明示している。

参考文献

- H. Kitagawa, H. Ohtsu, M. Kawano, Angew. Chem. Int. Ed. 2013, 52, 12395–12399.
- H. Ohtsu, W. Choi, N. Islam, Y. Matsushita, M. Kawano, J. Am. Chem. Soc. 2013, 135, 11449-11452.

研究の発表

口頭発表

- Masaki Kawano, X-ray Snapshots of Labile Species in Interactive Pores, AsCA2015 (Kolkata, Dec. 8, 2015)
- 2. Masaki Kawano, Ab initio Powder Structure Determination Opening Up New Research Fields,

PITTCON (Atlanta, 8th, March, 2016), The State-of-the-Art Technologies from Japan: Analytical Instruments with/for Nano-Chemistry Technology and Advanced Diagnostics

- Masaki Kawano, X-Ray Snapshot of Chemical Processes in Interactive Porous Networks, the 2016 Dynamic Structural Science Workshop, (Abingdon, 25-27 April 2016)
- (keynote) Masaki Kawano, REDOX-ACTIVE COORDINATION NETWORKS, International Workshop on Porous Coordination Compounds (IWPCC) 2016, (September 19–23, 2016, Altay, Russia)

誌上発表

1. H. Kitagawa, H. Ohtsu, A.J. Cruz-Cabeza and M. Kawano, *IUCrJ*, **2016**, 3, 232–236.