アドレナリン受容体のシグナル選択性の構造基盤

Structural basis of adrenergic receptor signaling

所属機関:清華大学 代表研究者氏名:豊田 洋輔 研究期間:2021年5月1日~2022年4月30日 滞在研究機関: School of Medicine, Tsinghua University Beijing, 100084, China 共同研究者等: Prof. Brian K. Kobilka

10-point Times New Roman and about 200 words in length.

The α_{1A} -adrenergic receptor ($\alpha_{1A}AR$) belongs to the family of G protein- coupled receptors that respond to adrenaline and noradrenaline. $\alpha_{1A}AR$ is involved in smooth muscle contraction and cognitive function. Here, we present three cryo-electron microscopy structures of human $\alpha_{1A}AR$ bound to the endogenous agonist noradrenaline, its selective agonist oxymetazoline, and the antagonist tamsulosin, with resolutions range from 2.9 Å to 3.5 Å. Our active and inactive $\alpha_{1A}AR$ structures reveal the activation mechanism and distinct ligand binding modes for noradrenaline compared with other adrenergic receptor subtypes. In addition, we identified a nanobody that preferentially binds to the extracellular vestibule of $\alpha_{1A}AR$ when bound to the selective agonist oxymetazoline. These results should facilitate the design of more selective therapeutic drugs targeting both orthosteric and allosteric sites in this receptor family.

研究目的

アドレナリン受容体は7回膜貫通型のGタンパク 質共役受容体 (GPCR) の一種であり、ホルモンであ るアドレナリンや神経伝達物質であるノルアドレナ リンが結合することにより、細胞内の三量体 G タン パク質と共役し交感神経を調節する。アドレナリン 受容体(AR)には α1ARs(α1A, α1B, α1D; 主に血管平滑筋 に存在、Gq/11 共役)、α2 ARs (α2A, α2B, α2C; 主に中枢神 経に存在、Gi₆ 共役)、βARs (β1, β2, β3; 主に心臓や肺 に存在、Gs 共役)の計9分子種 (サブタイプ) あり、 それぞれ異なるGタンパク質と共役し異なるシグナ ル経路を活性化する。これらのうち、β2AR が最も良 く研究されており、申請者の留学先指導教官である Kobilka 博士らにより 2007 年に拮抗剤が結合した不 活性型 β₂AR の構造 [1]、2011 年に作動薬が結合した 活性型 β2AR-Gs 複合体の構造 [2] が報告されている。 これらの成果により Kobilka 博士は 2012 年のノーベ ル化学賞を受賞している。スタンフォード大学の教 授に加え、2012年より清華大学の客員教授も併任し ている。

βARsに比べαARsの立体構造に関しては報告例が 少なく、2019年以降、活性型 α₂AAR-Go [3]、不活性 型 α₂AAR [4]、活性型 α₂BAR-Gi/o [5]、不活性型 α₂CAR [6]が報告されたものの、α₁AR に関しては、2022 年 の不活性型 α₁BAR の構造 [7] のみである。

そこで我々は今回、クライオ電子顕微鏡を利用す ることにより、活性型および不活性型 αιAAR の3種 類の新規構造を決定した(Toyoda et al. Nature Commun., 2023)。選択的作動薬であり鼻粘膜充血除 去剤として市販されているオキシメタゾリン、ある いは内因性リガンドであるノルアドレナリンが結合 した2種類の活性型構造、および低血圧や前立腺肥 大症の治療薬として利用されている拮抗剤タムスロ シンが結合した不活性型の構造である。これらの構 造情報により、αιAAR を標的としたより選択的な医 薬品の開発が期待される。

研究経過

昆虫細胞 Spodoptera frugiperda (Sf9) に α_{1A}AR を発 現させ、界面活性剤による可溶化や FLAG タグなど

を用いて精製した。さらに α_{1A}AR を安定化させるた め、近年 Kruse 研究室らにより確立された合成ナノ ボディ(単一ドメイン抗体、Nb) ライブラリー [8] を基に、Nb が細胞表面に発現した出芽酵母を磁気ビ ーズによる Magnetic-activated cell sorting (MACS) や 蛍光標識による Fluorescence-activated cell sorting (FACS) によりスクリーニングした。作動薬(オキ シメタゾリン)または拮抗薬(タムスロシン)が結 合した異なる状態の αιAAR 精製標品を用い、立体構 造選択的なナノボディの選別を行った結果、Nb29が オキシメタゾリン結合型の α_{1A}AR を選択的に認識 し、オキシメタゾリンの結合を強めることが推測さ れた。その分子メカニズムを調べるため、α_{1A}ARと Nb29の複合体を形成させ、クライオ電子顕微鏡によ る単粒子解析を行ったところ、Nb29 が α1AAR の細 胞外領域を認識していることが判明した。しかしな がら、分解能が不十分であり、特に細胞内側の α_{1A}AR の構造が不安定であった。 alaAR は Gq タンパク質 と共役するが、GPCR-Gq 複合体は GPCR-Gs 複合体 や GPCR-Gi/o 複合体に比べ不安定であることが多 く、代替として、改変体である miniGsq を用いた構 造決定が近年報告されている [9]。miniGsq は mini-Gs (Gs タンパク質の動的領域を削除した縮小変異 体)のC 末端 α5 helix を Gq タンパク質のC 末端 α5 helix と置換した改変体である。我々は検討の結果、 Nb29-α1AAR-miniGsq 複合体として、オキシメタゾリ ンあるいはノルアドレナリンが結合した二つの活性 型 α1AAR のクライオ電子顕微鏡構造を、それぞれ 2.9 Åと3.5Åの分解能で得た (Figure 1a-d)。

それと並行し、不活性型の α1AAR の構造決定にも 取り組んだ。不活性型 GPCR は、活性型 GPCR-G タ ンパク質複合体に比べて分子量が小さいため、クラ イオ電子顕微鏡に比べ X 線回折による結晶構造解析 が主流である。細胞膜外ループ領域への融合タンパ ク質の挿入や立体構造認識抗体を用いた結晶化が汎 用されており、我々も融合タンパク質を挿入した α1AAR 変異体や、合成 Nb ライブラリーから選別し た別のナノボディを用い、結晶化およびクライオ電 子顕微鏡による不活性型 α1AAR の解析を試みたもの の、構造決定には至らなかった。最終的に、2021 年 末に bioRxiv に投稿された κ-オピオイド受容体(kOR) のキメラ変異体による手法を用いた [10]。この手法 では、kOR を不活性型に固定するナノボディ Nb6 の エピトープ(抗原認識部位)である kOR の細胞内側

Figure 1: The cryo-EM density maps and structure models of the Nb29- α_{1A} AR-miniGsq complexes bound to the agonists oxymetazoline (a and b) and noradrenaline (c and d), and α_{1A} AR-Nb6 complex bound to the antagonist tamsulosin (e and f).

の膜貫通領域 (transmembrane; TM) 5 と 6、および細 胞内第 3 ループを別の GPCR に移植し、Nb6 と複合 体を形成させることにより、ニューロテンシン受容 体 NTSR1 やソマトスタチン受容体 SSTR1 の不活性 型構造をクライオ電子顕微鏡により決定している。 我々はこれを応用し、 $\alpha_{IA}AR \sim Nb6$ のエピトープを 導入した $\alpha_{IA}AR$ -kOR キメラ変異体を作製し、 $\alpha_{IA}AR$ -Nb6 複合体として、タムスロシンが結合した不活性 型 $\alpha_{IA}AR$ のクライオ電子顕微鏡構造を 3.3 Å の分解 能で得た (Figure 1e, f)。

活性型および不活性型 α₁AAR の構造を比較した結 果、活性型では TM 6 が外側に 14.5 Å 移動していた (Figure 2a)。その他、膜貫通 helix 3、5、7 が内側に微 移動しており、これらの構造変化により、α₁AAR と miniGsq の C 末端 α5 helix との結合が促進された。 一方、不活性型 α₁AAR では Nb6 による膜貫通 helix 6 の固定が認められた。

続いて3種類のリガンド結合状態を比較した (Figures 1b, d, f and 2b)。内在性リガンドであるノル アドレナリンに対し、オキシメタゾリンではアミノ 基がイミダゾール環に置換しており、α1AARのフェ

Figure 2: a, Comparison of $\alpha_{1A}AR$ between active and inactive states. **b,** Comparison of ligand-binding pockets of $\alpha_{1A}AR$. **c,** Nb29 binding sites. **d,** Superimposition of the binding interfaces of $\alpha_{1A}AR$ -miniGsq complex with $\alpha_{2A}AR$ -Go (PDB ID: 7EJ0) and β_2AR -Gs (PDB ID: 3SN6) complexes. The receptors are used for alignment.

ニルアラニン 312 の側鎖とより強く π-π相互作用 していることが分かった。このフェニルアラニン残 基は α1ARs および α2ARs 間で保存されている一方、 βARs ではアスパラギンである。この他、α1AAR に 特徴的なアミノ酸であるメチオニン 292 やバリン 185 が作動薬の選択性に寄与していることが分か った。一方、タムスロシンが結合した不活性型の構 造では、フェニルアラニン 312 の側鎖による蓋が開 いており、作動薬が結合しているオルソステリック 部位から細胞外前庭部(extracellular vestibule)に亘 りタムスロシンが結合し、TM 7を僅かに外向きへ 広げていた。

次に、Nb29 が作用機構について調べた。Nb29 は α_{1A}AR の細胞外第二ループ(ECL2)や TM7 を主に 認識し、相補性決定領域(complementary-determined region; CDR) 1-3 の内、最も長い CDR 3 が細胞外前 庭部に結合することにより、TM7 を内向きに安定化 していることが分かった(Figure 2c)。このような TM7 の内向きへの安定化によるポジティブアロステ リック調節機構は、ムスカリン性アセチルコリン M2 受容体のポジティブアロステリック調節薬である LY2119620 が結合した構造においても報告されてお り、α_{1A}AR でも同様の作用機序が示唆された。 最後に我々は α_{1A} AR-miniGsq、 α_{2A} AR-Go、 β_{2} AR-Gs の複合体の構造を比較することにより、G タンパク 質共役の選択性を調べた (Figure 2d)。 α_{1A} AR-miniGsq では miniGsq の C 末端 α 5 helix が α_{1A} AR の TM7 に 近く、これに対し、 β_{2} AR-Gs では Gs の C 末端 α 5 helix が β_{2} AR の TM5 の方向へ向いており、 α_{2A} AR-Go で は Go の C 末端 α 5 helix がその中間に位置していた。 これらの相互作用の違いには、各々の受容体および G タンパク質のアミノ酸配列の違いが関係している ことが分かった。

考察

本研究により、内在性リガンドであるノルアドレ ナリン、または選択的作動薬オキシメタゾリンが結 合した活性型の構造、および拮抗薬タムスロシンが 結合した不活性型の構造を決定し、 α_{1A}AR に特徴的 なリガンド認識機構が明らかとなった。また、本研 究では細胞外領域を認識するナノボディ Nb29 を見 出し、α_{1A}AR の活性を特異的にアロステリック調節 する構造基盤を示した。また、α_{1A}AR-miniGsq 複合体 と、α2AAR-Go 複合体、β2AR-Gs 複合体の構造を比較 することにより、G タンパク質共役のサブタイプ選 択性を示唆する結果を得た。以上により、アドレナ リン受容体の主要なサブタイプ(α1、α2、β)の活性 型および不活性型の構造が揃ったことになり、これ らの知見は、低分子薬のみならず、アロステリック 調節薬や抗体医薬の効果的な設計に寄与することが 期待される。

参考文献

- Cherezov, V., et al., High-resolution crystal structure of an engineered human β₂-adrenergic G proteincoupled receptor. *Science*, 2007. 318.
- Rasmussen, S.G., et al., Crystal structure of the β₂ adrenergic receptor-Gs protein complex. *Nature*, 2011. 477(7366): p. 549-55.
- Xu, J., et al., Structural insights into ligand recognition, activation, and signaling of the α_{2A} adrenergic receptor. *Sci Adv*, 2022. 8(9): p. eabj5347.

- Qu, L., et al., Structural Basis of the Diversity of Adrenergic Receptors. *Cell Rep*, 2019. 29(10): p. 2929-2935.e4.
- Yuan, D., et al., Activation of the α_{2B} adrenoceptor by the sedative sympatholytic dexmedetomidine. *Nat Chem Biol*, 2020.
- Chen, X., et al., Molecular Mechanism for Ligand Recognition and Subtype Selectivity of α_{2C} Adrenergic Receptor. *Cell Rep*, 2019. **29**(10): p. 2936-2943.e4.
- Deluigi, M., et al., Crystal structure of the α_{1B}adrenergic receptor reveals molecular determinants of selective ligand recognition. *Nat Commun*, 2022. 13(1): p. 382.
- McMahon, C., et al., Yeast surface display platform for rapid discovery of conformationally selective nanobodies. *Nat Struct Mol Biol*, 2018. 25(3): p. 289-296.
- Nehmé, R., et al., Mini-G proteins: Novel tools for studying GPCRs in their active conformation. *PLoS One*, 2017. 12(4): p. e0175642.

- Robertson, M.J., et al., Structure Determination of Inactive-State GPCRs with a Universal Nanobody. *bioRxiv*, 2021.
- Kruse, A.C., et al., Activation and allosteric modulation of a muscarinic acetylcholine receptor. *Nature*, 2013. 504(7478): p. 101-6.

研究の発表

口頭発表 なし

誌上発表

 Yosuke Toyoda^{*,#}, Angqi Zhu^{*}, Fang Kong, Sisi Shan, Jiawei Zhao, Nan Wang, Xiaoou Sun, Linqi Zhang, Chuangye Yan[#], Brian K. Kobilka[#], Xiangyu Liu[#], Structural basis of α_{1A}-adrenergic receptor activation and recognition by extracellular nanobody, *Nature Communications* 14, 3655 (2023). (*These authors contributed equally to the work, [#]Correspondence) <u>https://doi.org/10.1038/s41467-023-39310-x</u>