

Simulation of photon-nuclear interaction in production of medical isotopes and transmutation of nuclear waste

> Barbara Szpunar Chary Rangacharyulu

B.Szpunar@usask.ca 306-966-6462

June 18th, 2010, Osaka, JICA

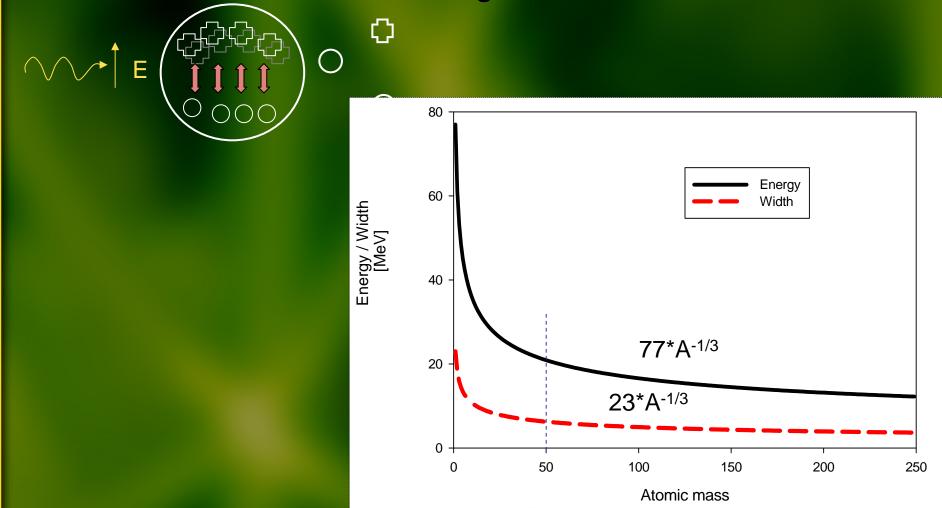
CONTRACTOR OF A CONTRACTOR OF A

In memory of my mother Anna her unlimited love and support!

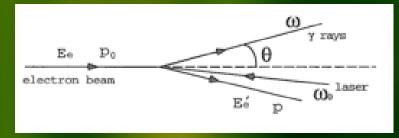
Content

- Purpose of this work and introduction
- Background on FLUKA simulation method
- Photon induced artificial transmutation
 - Medical isotope production
 - Photofission
 - Treatment of long-lived isotopes
- Summary and conclusions

Purpose of this work and introduction


- Shortage of medical isotopes call for alternative production methods
- Most widely used ⁹⁹Mo -> ^{99m}Tc (~35 common radiopharmaceuticals)

^{99m}Tc -> ⁹⁹Tc + γ Each diagnostic uses few GBq (1GBq = 0.027 Ci)



- EPAC 2000 Vienna, world uses: 150,000 Ci/year
- Proton cyclotrons located close to hospital can supply average usage: e.g. at CHUS, Sherbrooke 10 Ci/week of ^{99m}Tc
- ^{99m}Tc is short-lived (T_{1/2} = 6.0058 h) therefore ⁹⁹Mo (T_{1/2} = 65.94 h) needed for remote, small hospitals

⁹⁹Mo and other medical and industrial usage isotopes can be produced using photons at Giant Dipole Resonance energies

April 2010, Canadian Light Source, workshop

- CLS equipped with a CO₂ laser back scatter system to test the feasibility of application of photo-nuclear transmutations
- Discussion and collaboration with international community (Japan (JAEA), USA)
- Achievable at CLS maximum photon energy: 15 MeV for 2.9 GeV electron beam energy (0 degree incident angle)
- Supportive FLUKA simulation: design of experiment, evaluation

FLUKA http://www.fluka.org

- Main authors: A. Fassò, A. Ferrari, J. Ranft, P.R. Sala
- Contributing authors: G.Battistoni, F.Cerutti, T.Empl, M.V.Garzelli, M.Lantz, A. Mairani, V.Patera, S.Roesler, G. Smirnov, F.Sommerer, V.Vlachoudis

- >2000 users
- Developed and maintained under an INFN-CERN agreement Copyright 1989-2008 CERN and INFN

The FLUKA international collaboration

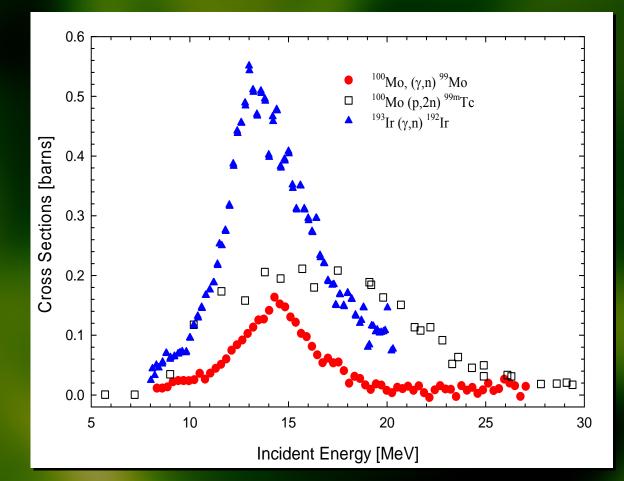
G. Battistoni, F. Broggi, M. Campanella, E. Gadioli, A. Mairani, S. Muraro, P.R. Sala INFN & Univ. Milano, Italy

M.Brugger, F. Cerutti, A. Ferrari, S. Roesler, G. Smirnov, C. Theis, S. Trovati, Hei. Vinke, Hel. Vincke, V.Vlachoudis CERN

- A. Fassò, J. Vollaire SLAC, USA
- J. Ranft Univ. of Siegen, Germany
- L. Sarchiapone INFN Legnaro, Italy

M. Carboni, A. Ferrari(*), V. Patera, M. Pelliccioni, R. Villari INFN Frascati, Italy

- M.C. Morone INFN & Univ. Roma II, Italy
- A. Margiotta, M. Sioli INFN & Univ. Bologna, Italy
- K. Parodi, F. Sommerer HIT, Heidelberg, Germany
- A. Empl, L. Pinsky Univ. of Houston, USA
- N. Zapp, NASA-Houston, USA
- S. Rollet ARC Seibersdorf Research, Austria
- M. Lantz, Riken Lab., Japan
- (*) now Dresden



FLUKA code

- FLUKA (FLUktuierende KAskade), fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter
- <u>Well tested models</u>
- Optimized by comparing with experimental data
- Fully analogue code or biased mode
- Double precision used, 10⁻¹⁰ energy conservation
- 60 particles modeled including polarized light
- <u>First Monte Carlo particle transport code with</u> <u>photonuclear interactions: MeV – TeV energy range</u>

Medical Isotopes (photons versus protons)

http://www.nndc.bnl.gov

No time

dependence

Time

dependence

I: FLUKA hybrid simulations

 Five runs (each 10⁶ particles, GDR energy)
Energy deposition, equivalent dose
Fluence (n = L_{particle} / V_{target} → dn/dlnE): neutron, photon, proton
Residual nuclei (R_n- per particle)

• Calculate induced activity for a given beam intensity (I) $N(t \le t_i) = R \tau (1 - e^{-t/\tau}) \qquad R = I * R_n$ $\left| \frac{dN(t > t_i)}{dt} \right| = R(1 - e^{-t_i/\tau})e^{-(t-t_i)/\tau} \qquad t_i - \text{ irradiation time}$ $\tau - \text{ mean life}$ Activity_N(t) = N(t) Activity_{atom}

II: FLUKA induced activity simulations

Time dependence

- Set irradiation and cooling time, beam intensity
- Perform five runs using FLUKA's exact analytical implementation of Bateman equations for induced activity calculations
 - Total activity
 - Yield

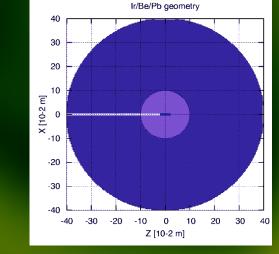
Ir/Pb geometry

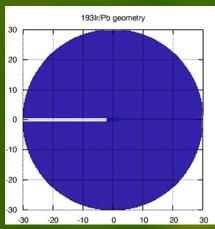
10 20 30 40

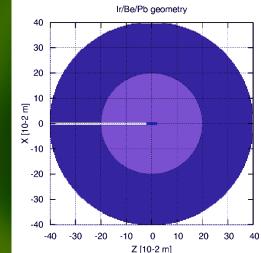
Natural Ir (37% of ¹⁹¹Ir and 63% of ¹⁹³Ir) 192 Ir, T_{1/2} = 73.83 d 193 Ir target

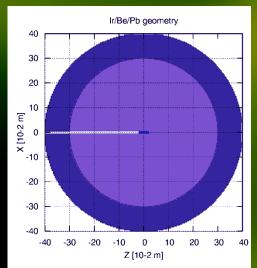
-20 -30 -40 -40 -30 -20 -10 0 Z [10-2 m] 40

40


30


20


10


0 -10

X [10-2 m]

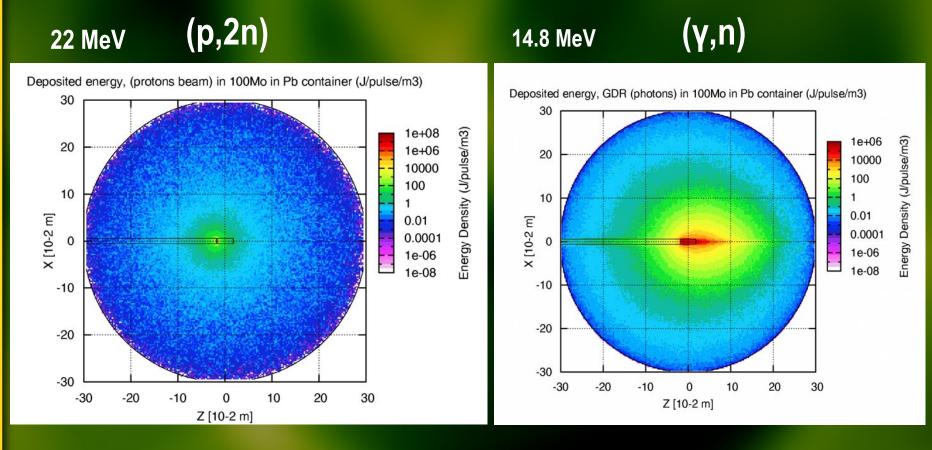
193 r	target
	larger

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{194} Ir^{\#}$	1.33x10 ⁻⁴	0.2
$(\gamma, e^+e^-)_{atomic}$ ¹⁹³ Ir	1.28x10 ⁻³	0.1
(γ,n) ¹⁹² Ir	2.04x10 ⁻²	0.04
$(\gamma, 2n)^{191}$ Ir	9.16x10 ⁻⁴	0.1
(γ,p) ¹⁹² Os	1.97x10 ⁻⁸	42

#Secondary neutron capture

* ¹⁹¹lr

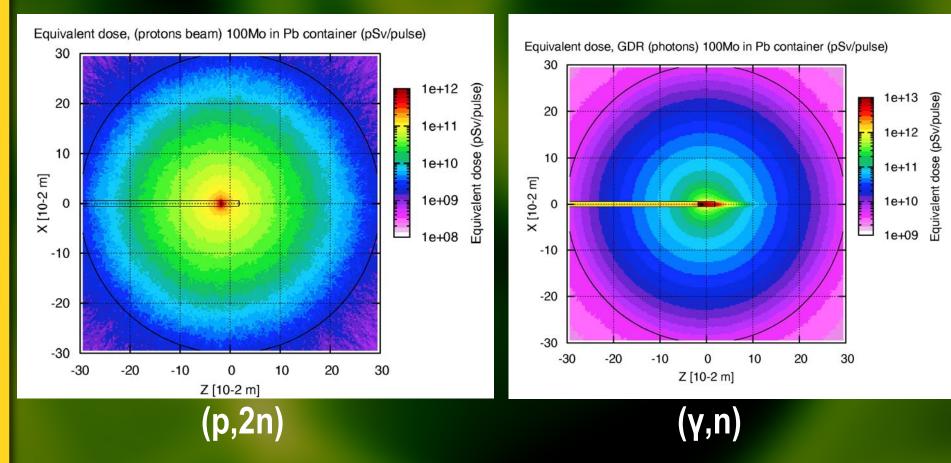
Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{194} Ir^{\#}$	3.44x10 ⁻⁴	1.2
$(\gamma, e^+e^-)_{atomic}$ ¹⁹³ Ir	1.29x10 ⁻³	1
(γ,n) or (n,γ)* ¹⁹² Ir	1.32x10 ⁻²	0.3
(γ,2n) ¹⁹¹ Ir	8.87x10 ⁻⁴	0.4
(γ ,3n) ¹⁹⁰ Ir	7.56x10 ⁻³	0.9


Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{194} Ir^{\#}$	3.19x10 ⁻⁴	1.9
$(\gamma, e^+e^-)_{atomic}$ ¹⁹³ Ir	1.29x10 ⁻³	0.9
(γ,n) or (n,γ)* ¹⁹² Ir	1.31x10 ⁻²	0.4
$(\gamma, 2n)^{191}$ Ir	9.06x10 ⁻⁴	1.7
(y,3n) ¹⁹⁰ Ir	7.51x10 ⁻³	0.3
(γ,p) ¹⁹⁰ Os	2.0x10 ⁻⁷	99

(37% of ¹⁹¹Ir and 63% of ¹⁹³Ir)

(Reaction) Produced Isotope	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{194} Ir^{\#}$	3.52x10 ⁻⁴	1.7
$(\gamma, e^+e^-)_{atomic}$ ¹⁹³ Ir	1.29x10 ⁻³	0.7
(γ,n) or (n,γ)* ¹⁹² Ir	1.33x10 ⁻²	0.2
$(\gamma, 2n)^{191}$ Ir	8.92x10 ⁻⁴	1.1
(γ ,3 n) ¹⁹⁰ Ir	7.55x10 ⁻³	0.3

N CIERRE


FLUKA; Proton versus photon ¹⁰⁰Mo transmutation; Geometry (target: 1.2 cm (d) x 3.6 cm (h)), energy deposition

Natural Mo: 9.63% ¹⁰⁰Mo, 24.13% ⁹⁸Mo

FLUKA; Proton versus photon ¹⁰⁰Mo transmutation; Equivalent dose

W_n: 10 (2-20 MeV), 5 (above) and 20 (below this energy)

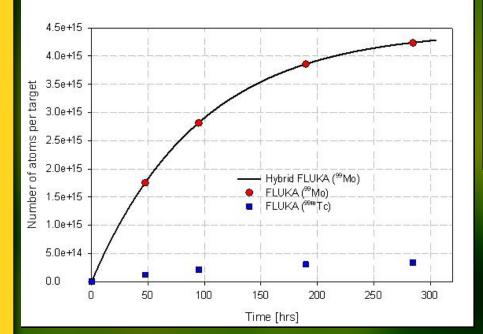
FLUKA; Proton versus photon ¹⁰⁰Mo transmutation

Produced Isotope (reaction)	Yield [per one proton/cm ³] ¹⁰⁰ Mo target Pb container	Error [%]	Produced Isotope (reaction)	Yield [per one photon/cm ³] ¹⁰⁰ Mo target Pb container	Error [%]
(p,n) ¹⁰⁰ Tc	5.44x10 ⁻⁴	2.9	(n,γ) ¹⁰¹ Mo [#]	3.65 x10 ⁻⁶	1.2
(p,2n) ⁹⁹ Tc	4.14x10 ⁻³ (∼ 2x10 ^{-3 99m} Tc)	1	(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	7.85 x10⁻⁵	0.4
(p,3n) ⁹⁸ Tc	7.23x10 ⁻⁴	1.6	(γ,n) ⁹⁹ Mo	1.31 x10 ⁻²	0.03
(n,γ) ¹⁰¹ Mo [#]	1.00x10 ⁻⁶	77.5	(γ,2n) ⁹⁸ Mo	6.06 x10 ⁻³	0.1
(p,p) ¹⁰⁰ Mo	2.09x10 ⁻⁴	1.1	(γ,3n) ⁹⁷ Mo	9.27 x10 ⁻⁵	0.6
(n n ⁸ n) 99Ma	9.42x10 ^{-h5}	4.8	(γ,4n) ⁹⁶ Mo	1.04 x10 ⁻⁴	0.3
(p,n&p) ⁹⁹ Mo	9.42X IU""	4.0			

#Secondary neutron capture; * ⁹⁸Mo

Natural Mo: 9.63% ¹⁰⁰Mo, 24.13% ⁹⁸Mo

FLUKA; Proton versus photon ¹⁰⁰Mo transmutation


Produced Isotope (reaction)	Yield [per one photon/cm ³] Natural Mo target Be container	Error [%]	Produced Isotope (reaction)	Yield [per one photon/cm ³] ¹⁰⁰ Mo target Pb container	Error [%]
(n,γ) ¹⁰¹ Mo [#]	4.29 x10 ⁻⁶	0.9	(n,γ) ¹⁰¹ Mo [#]	3.65 x10 ⁻⁶	1.2
(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	6.32 x10⁻⁵	0.4	(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	7.85 x10⁻⁵	0.4
(γ,n)&(n,γ)# ⁹⁹ Mo	1.27 x10 ⁻³	0.01	(γ,n) ⁹⁹ Mo	1.31 x10 ⁻²	0.03
(γ,2n)&(γ,γ)* ⁹⁸ Mo	7.07 x10 ⁻⁴	0.2	(γ,2n) ⁹⁸ Mo	6.06 x10 ⁻³	0.1
(γ,3n)&(γ,n)* ⁹⁷ Mo	4.71 x10 ⁻³	0.1	(γ,3n) ⁹⁷ Mo	9.27 x10 ⁻⁵	0.6
(γ,4n)&(γ,2n)* ⁹⁶ Mo	2.15 x10 ⁻³	0.1			
			(γ,4n) ⁹⁶ Mo	1.04 x10 ⁻⁴	0.3
(γ,5n)&(γ,3n)* ⁹⁵ Mo	3.18 x10 ⁻³	0.1			

#Secondary neutron capture; * ⁹⁸Mo

Natural Mo: 9.63% ¹⁰⁰Mo, 24.13% ⁹⁸Mo

FLUKA hybrid versus FLUKA calculations

Photonuclear (14.8 MeV) transmutation (100 Mo (y,n) 99 Mo) (10 12 photons/s)

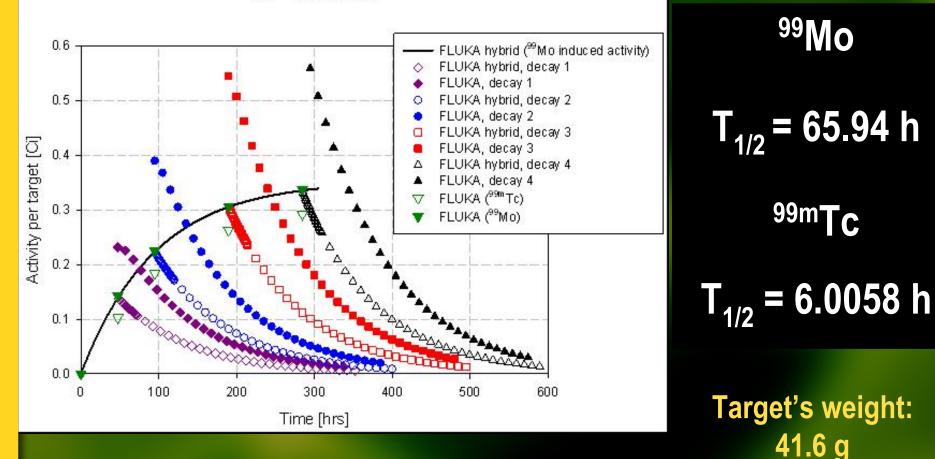
6 x 10²¹ atoms in 1g of Mo

NRU produces (in reactor) per year : ~3.65 x 10^{22 99} Mo atoms ~24 g Mo with 25% ⁹⁹Mo

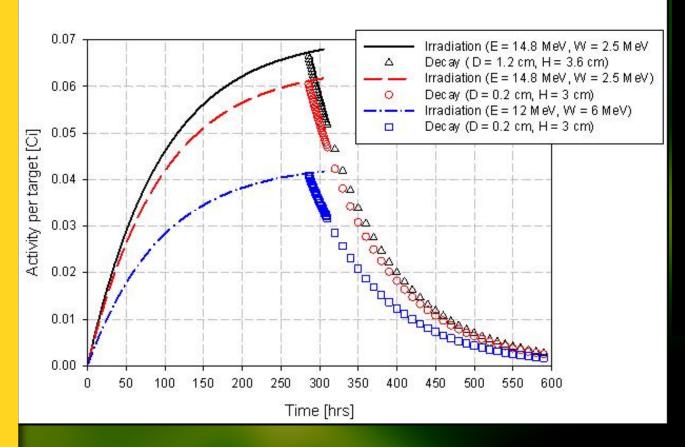
6 g of ⁹⁹Mo: 2,887,993 Ci (decay) -> ~ 60,000 Ci

EPAC 2000 Vienna, used per year: 150,000 Ci

 $- N(t) = Activity_g(t) / Activity_{atom}$


Target's weight: 41.6 g

Target	Irradiation	⁹⁹ Mo	⁹⁹ Mo	^{99m} Tc	^{99m} T
¹⁰⁰ Mo	Time [hrs]	Activity [Ci]	Specific Activity [Ci/g]	Activity [Ci]	Specific Activity [Ci/g]
⁹⁹ Mo, T _{1/2}	284.67	0.337	0.008	0.296	0.007
65.94 h	189.78	0.307	0.007	0.266	0.006
^{99m} Tc, T _{1/2}	94.89	0.225	0.005	0.184	0.004
6.0058 h	47.44	0.143	0.003	0.102	0.002


FLUKA; Photon induced activity

Induced (14.8 MeV) total activity (100 Mo (γ ,n) 99 Mo) (10 12 photons/s)

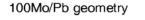
FLUKA; Photon induced activity (Parameters by H. Ejiri, S. Date et al.)

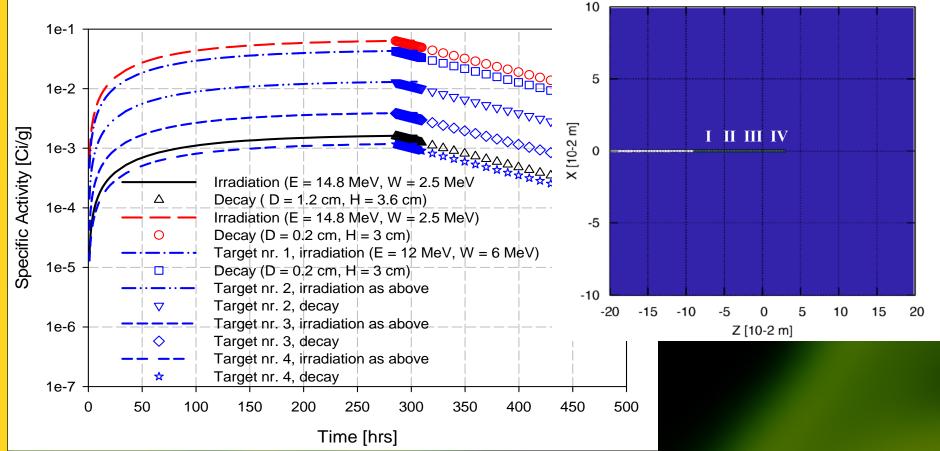
FLUKA hybrid simulations of induced activity $(^{100}Mo (\gamma,n)^{99}Mo)$ (2x10¹¹ photons/s)

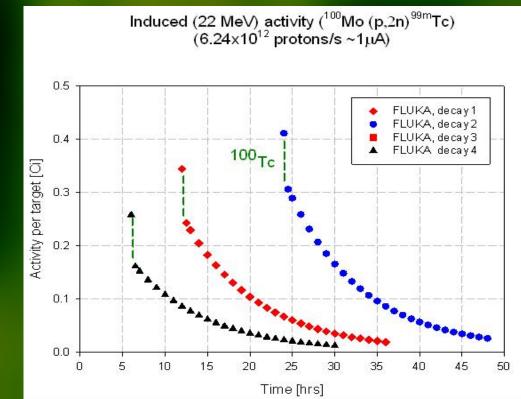
⁹⁹Mo

T_{1/2} = 65.94 h

^{99m}Tc


T_{1/2} = 6.0058 h

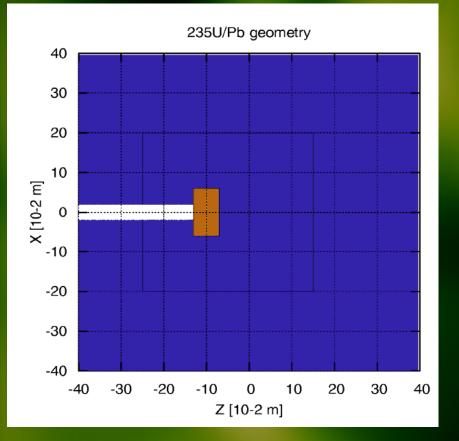


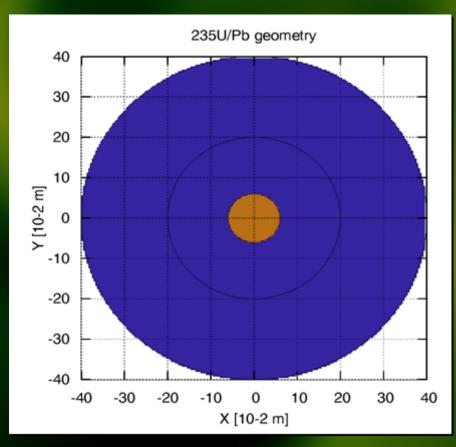

FLUKA; Photon induced activity (multiple targets by H. Ejiri)

FLUKA hybrid simulations of induced activity (100 Mo (γ ,n) 99 Mo) (2x10 11 photons/s)

FLUKA; Proton induced activity

Target	Irradiation	^{99m} Tc	99m T	¹⁰⁰ Tc	¹⁰⁰ Tc
¹⁰⁰ Mo	Time [hrs]	Activity [Ci]	Specific Activity [Ci/g]	Activity [Ci]	Specific Activity [Ci/g]
¹⁰⁰ Tc, T _{1/2}	24	0.317	0.008	0.087	0.002
15.46 s	12	0.256	0.006	0.087	0.002
	6	0.174	0.004	0.087	0.002


Photofission versus GDR transmutation


Photons (16 MeV)	Fission yield per one photon [Nuclei/cm ³] (May be heavily underestimated by the FLUKA currently!)						β [.] yield	
Target	⁹⁹ Mo(42)	99Mo(42) 99Kr(36) 99Rb(37) 99Sr (38) 99Y(39) 99Zr(40) 99Nb(41)						
²³⁸ U	1.17x10 ⁻⁷	8.32x10 ⁻⁸	3.94x10 ⁻⁶	1.83x10⁻⁵	6.47x10⁻⁵	3.46x10⁻⁵	6.15x10 ⁻⁶	1.28x10 ⁻⁴
Errors (%)	20.2	20.5	2.1	1.1	0.9	0.7	2.3	

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
(n,γ) ¹⁰¹ Mo [#]	3.65 x10 ⁻⁰⁶	1.2
(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	7.85 x10 ⁻⁰⁵	0.4
(γ,n) ⁹⁹ Mo	1.31 x10 ⁻⁰²	0.03
(γ,2n) ⁹⁸ Mo	6.06 x10 ⁻⁰³	0.1

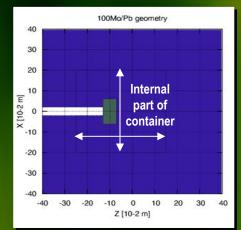
#Secondary neutron capture

Fission in FLUKA (geometry, target: 12 cm (d) x 6 cm (h))

⁹⁹Mo production in photofission

Photons (12.5 MeV)	Subcritical fission yield per one particle [nuclei/cm ³] May be heavily underestimated by FLUKA currently!							β ⁻ yield*	
Target	⁹⁹ Mo(42)	⁹⁹ Mo(42) ⁹⁹ Kr(36) ⁹⁹ Rb(37) ⁹⁹ Sr (38) ⁹⁹ Y(39) ⁹⁹ Zr(40) ⁹⁹ Nb(41)							
²³⁸ U	2.75x10 ⁻⁸	3.88x10 ⁻⁸	1.74x10 ⁻⁶	1.0x10 ⁻⁵	3.65x10⁻⁵	1.60x10 ⁻⁵	1.62x10 ⁻⁶	6.63x10 ⁻⁵	
Errors (%)	36.8	15.0	2.9	1.6	0.6	0.7	6.5		
²³⁵ U	1.35x10 ⁻⁵	7.86x10 ⁻⁸	4.40x10 ⁻⁶	2.13x10 ⁻⁴	2.23x10 ⁻³	3.43x10 ⁻³	3.08x10 ⁻⁴	6.19x10 ⁻³	
Errors (%)	1.3	22.2	1.3	0.3	0.2	0.1	0.2		
²³⁴ U	5.54x10 ⁻⁶	2.38x10 ⁻⁸	9.83x10 ⁻⁷	1.45x10⁻⁵	2.39x10 ⁻⁴	7.51x10 ⁻⁴	1.51x10 ⁻⁴	1.16x10 ⁻³	
Errors (%)	1.4	40.8	4.6	1.1	0.2	0.2	0.2		
²³² Th	4.00x10 ⁻⁰	3.92x10 ⁻⁹	1.03x10 ⁻⁷	6.62x10 ⁻⁷	2.85x10 ⁻⁶	1.52x10⁻ ⁶	1.93x10 ⁻⁷	5.33x10 ⁻⁶	
Errors (%)	99.0	99.0	23.1	7.8	2.4	1.7	11.5		

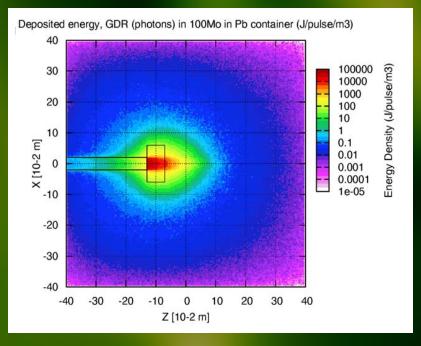
GD

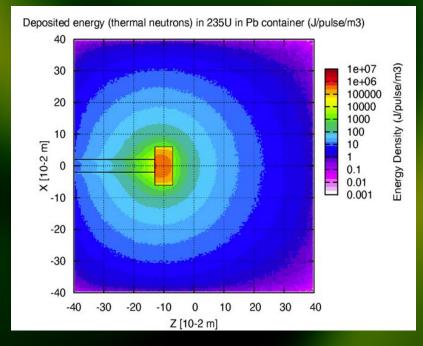


⁹⁹Mo production comparison Target 0.12 m diameter and 0.06 m height

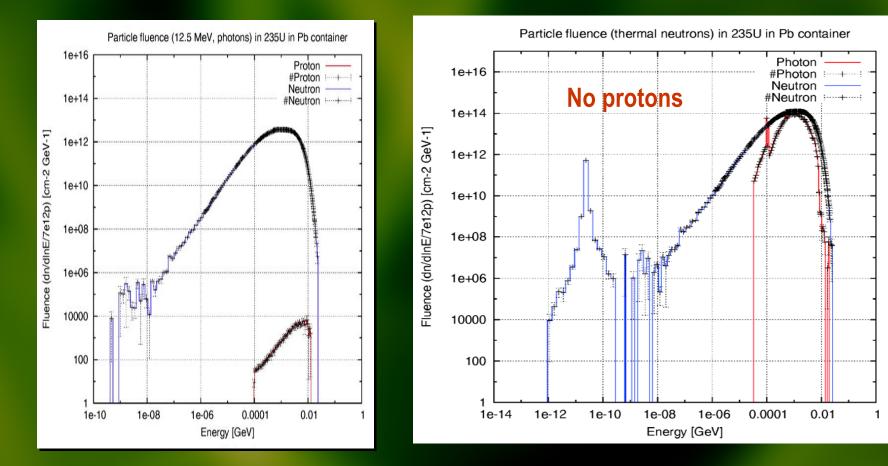
Thermal neutrons	Fission (subcritical) yield per one neutron [nuclei/cm ³]				β [.] yield*	Total		
Target	⁹⁹ Mo(42)	⁹⁹ Rb(37)	⁹⁹ Sr (38)	⁹⁹ Y(39)	⁹⁹ Zr(40)	⁹⁹ Nb(41)	⁹⁹ Mo(42)	⁹⁹ Mo(42)
²³⁵ U	7.01 x10 ⁻⁴	3.40 x10 ⁻⁶	0.00728	0.0854	0.139	0.0118	0.2435	0.244
Errors (%)	1.2	17.6	0.5	0.2	0.3	0.5		

	Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
	(n,γ) ¹⁰¹ Mo [#]	6.88 x10 ⁻⁵	0.2
	(γ,e⁺e⁻) _{atomic} ¹⁰⁰ Mo	7.69 x10 ⁻⁴	0.0
R→	(γ,n) ⁹⁹ Mo	1.58 x10 ⁻²	0.0
	(γ,2n) ⁹⁸ Mo	8.47 x10 ⁻³	0.1
	(γ,3n) ⁹⁷ Mo	9.71 x10 ⁻⁴	0.0
	(γ,4n) ⁹⁶ Mo	1.11 x10 ⁻³	0.1
	(γ,5n) ⁹⁵ Mo	1.75 x10 ⁻³	0.1



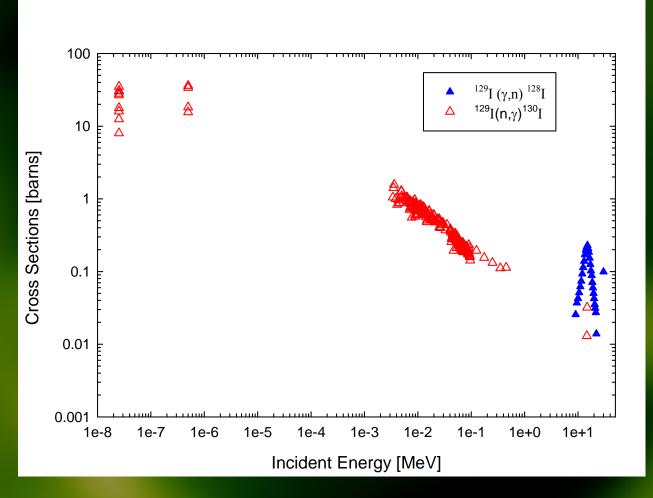


Energy deposition in ⁹⁹Mo production


Thermal neutrons (0.025 eV)	Average Energy	Error	Standard Deviation	
²³⁵ U Target	GeV/particle	[%]	GeV/particle	
Target	0.7330	0.32	0.0023	
Internal part of the lead container	0.0131	0.23	3.0509x10 ⁻⁵	
External part of the lead container	0.0036	0.29	1.0186 x10 ⁻⁵	
	_			
GDR (0.0148 MeV)	Average Energy	Error	Standard Deviation	
GDR (0.0148 MeV) ¹⁰⁰ Mo Target	Average Energy GeV/particle	Error [%]	Standard Deviation GeV/particle	
¹⁰⁰ Mo Target	GeV/particle	[%]	GeV/particle	

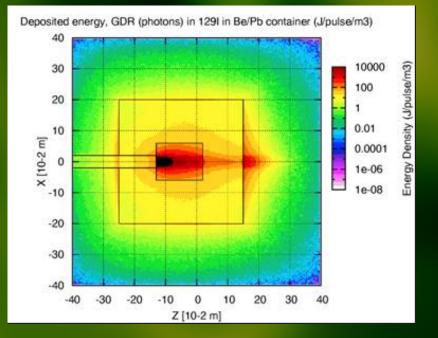
GDR, photofission versus thermal neutrons fission (subcritical); Energy deposition

Photofission versus thermal neutrons fission (subcritical); Fluence



Waste management

- Nuclear waste consists of 0.74% fission products and 99.26% actinides, with 98.81% uranium and 0.45% longlived transuranic actinides (Ottensmeyer, CNS 2010)
- Treatment of long-lived isotopes: ⁷⁹Se, ⁹³Zr, ¹⁰⁷Pd, ¹²⁶Sn, ¹²⁹I and ¹³⁵Cs; radio-toxic >10⁵ years needed
- GDR transmutation to short-lived isotopes (⁹⁹Tc is not transformed to short-lived isotope)
 - 1.57 x10⁷ years half-life time of ¹²⁹I to 24.99 m ¹²⁸I or 12.36 h ¹³⁰I (secondary neutron capture)


Photons versus neutrons

http://www.nndc.bnl.gov

Long lived waste transmutation; energy deposition & equivalent dose

Equivalent dose, GDR (photons) 129I in Be/Pb container (pSv/pulse) 30 1e+13(pSv/pulse) 1e+12 20 1e+11 dose 1e+10 10 X [10-2 m] 1e+09 1e+08 1e+07 -10 -20 -30 -40 30 Z [10-2 m]

Wn: 10 (2-20 MeV), 5 (above), 20 (below this energy)

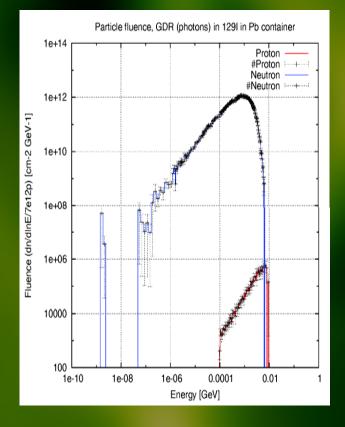
¹²⁹I transmutation by GDR (15.24 MeV)

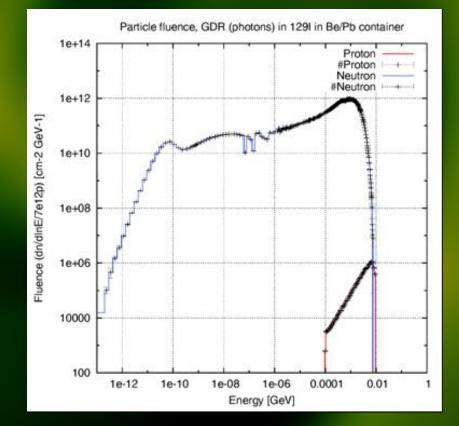
Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{130}I^{\#}$	9.22 x10 ⁻⁰³	0.4
$(\gamma, e^+e^-)_{atomic}$ ¹²⁹ I	6.15 x10 ⁻⁰³	0.4
(γ,n) ¹²⁸ Ι	2.88 x10 ⁻⁰²	0.3
$(\gamma, 2n)^{127}$ I	9.88 x10 ⁻⁰⁴	1.2
(y,p) ¹²⁸ Te	3.20 x10 ⁻⁰⁶	33.4

Be container

#Secondary neutron capture

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{130}I^{\#}$	7.91 x10 ⁻⁰³	0.8
$(\gamma, e^+e^-)_{atomic} {}^{129}I$	6.17 x10 ⁻⁰³	0.9
(y,n) ¹²⁸ I	2.90 x10 ⁻⁰²	0.2
$(\gamma, 2n)^{127}$ I	9.87 x10 ⁻⁰⁴	1.3
(y,p) ¹²⁸ Te	5.60 x10 ⁻⁰⁶	26.2


Be/Pb container


Pb container

1.57 x10⁷ years half-life time of 129 I \longrightarrow 24.99 min 128 I or 12.36 h 130 I (secondary neutron capture)

Produced Isotope (reaction)	Yield [per one photon/cm ³]	Error [%]
$(n,\gamma)^{130}I^{\#}$	1.08 x10 ⁻⁰³	0.8
$(\gamma, e^+e^-)_{atomic} {}^{129}I$	6.81 x10 ⁻⁰³	0.5
(γ,n) ¹²⁸ Ι	2.88 x10 ⁻⁰²	0.1
$(\gamma, 2n)^{127}$ I	1.00 x10 ⁻⁰³	1.7
(y,p) ¹²⁸ Te	2.80 x10 ⁻⁰⁶	30.7

Long lived waste transmutation; fluence

Summary and conclusion

- FLUKA simulations show that the production of the desired isotopes via GDR (photon) are orders of magnitude higher than the other isotopes, indicating this technique to be promising method for artificial transmutations
- Applications
 - Production of medical and industrial isotopes
 - Transmutation of long lived isotopes to short lived
 - Induced transmutation & photofission as a source of neutrons

Comment: Currently γ beams have too low intensity for some applications. While it is expected that the intensity will be increased sufficiently for a production of medical isotopes, the total transmutation of nuclear waste requires intensities that will be probably not possible to achieve in the near future.

Acknowledgement

- Access to FLUKA code
- FLUKA developers and support group (especially Francesco Cerutti)
- V. Vlachoudis for FLAIR graphic interface with FLUKA
- C. Cederstrand for technical support
- Science and Engineering division for start up funding and support