X-ray nonlinear optics

Kenji Tamasaku

RIKEN/PRESTO

APSE2010 @ JICA Osaka 6/14/2010

- I. X-ray nonlinear optics
- 2. Parametric down-conversion of x-rays
- 3. Nonlinear susceptibility of diamond
- 4. Future perspectives

X-ray specific features: A²-interaction

$$\mathcal{H}' = \sum_{k} \left[-\frac{e}{mc} \vec{p}_k \cdot \vec{A}_k + \frac{e^2}{2mc^2} \vec{A}_k \cdot \vec{A}_k \right]$$
(pA) (A²)

@ Coulomb guage

Ex. 2nd order nonlinear process = 3 photon process (need 3 A)

"nonlinear optics"

XNLO - scince 1969

Theory & Experiment

Parametric downconversion into x-rays

Eisenberger, PRL 1972

Parametric downconversion into EUV

Danino, PRL 1981

Observable or not?

Application with XFEL

Glover, NPhys. 2010

I. X-ray nonlinear optics

2. Parametric down-conversion of x-rays

3. Nonlinear susceptibility of diamond

4. Future perspectives

XFEL (x-ray laser) under construction

Aring

m

~800 m

30 Gw

SPring-8 (x-ray flash lamp) < 2 kW

~500 m

X-ray parametric down-conversion (PDC)

Momentum conservation (phase matching)

Phase matching with reciprocal lattice vector; Q

"Nonlinear diffraction"

Grating of nonlinear polarizability

X-ray nonlinear diffraction

Usual (linear) diffraction structure of χ

Nature 456, 520 (2008).

Total charge density

SusceptibilityLinear: $P = \chi E$ 2^{nd} order NL: $P_p = \chi^{(2)} E_s E_i$ 3^{rd} order NL: $P_4 = \chi^{(3)} E_1 E_2 E_3$

Energy conservation

I. X-ray nonlinear optics

Parametric down-conversion of x-rays
 Nonlinear susceptibility of diamond
 Future perspectives

Experiments

Very different from optics...

Nonlinear medium: diamond

4/6 electrons : Bond2/6 electrons : Core

 Δk -dependence of signal intensity

Diamond, Q=(I,I,I)

Rocking curve of nonlinear diffraction $(\Delta k$ -dependence of signal intensity)

FIG. 3 (color online). The rocking curve of the nonlinear diffraction measured at $\Delta E = -100$ eV. Dashed line is polynomial fitting to the Compton background. The solid line is fitting with (7).

K.Tamasaku and T.Ishikawa, PRL 98, 244801 (2007).

Fano effect: PDC vs Compton scattering

K.Tamasaku et. al., Phys. Rev. Lett. 103, 254801 (2009)

Figure 1

Rocking curves of nonlinear diffraction measured at various phase-matching conditions from $\Delta E = 40$ to 130 eV. The solid line is fitting with (3). The dashed line is the estimated background with (4). The vertical bar indicates the scale for each curve. The inset shows the schematic phase-matching geometry. The broken lines correspond to the Bragg diffraction ($E_i = 0$).

K.Tamasaku and T.Ishikawa, Acta Cryst. A63, 437 (2007).

E₃- & Q-dependence of $\chi^{(2)}$

0.8

0.4

1.2

Diamond E_p=11.107 keV

Similar Q-dependence to the valence charge density.

cf. optical response at 100 eV

Reconstruction of $\chi^{(2)}(r)$

 $|\chi_Q^{(2)}|$: measured arg $(\chi_Q^{(2)})$: phase of valence charge

Fano effect (interference with Compton scattering by valence electrons)

$$\chi^{(2)}(r) = \sum_{Q} \chi^{(2)}_{Q} \exp(-iQ \cdot r)$$

Real space structure of **linear** susceptibility, χ (r), at 100 eV (124 Å) with angstrom resolution!

I. X-ray nonlinear optics

Parametric down-conversion of x-rays
 Nonlinear susceptibility of diamond

4. Future perspectives

Perspective of XNLO

Nonlinear response of vacuum - Ultimate NLO

Schwinger limit : I_{QED}=4×10²⁹ W/cm² Highest electric field in vacuum.

0.1 nm fucusing \Rightarrow 40 TW is sufficient to **boil vacuum**.

cf. XFEL: 30 GW (2011)

Smallest focal spot : 7 nm @ 2010 (Osaka Univ.Yamauchi lab.)