The 4th Yamada Symposium on Advanced Photon Science Evolution 2010

High Energy Density Sciences with Power Lasers

Ryosuke KODAMA

Graduate School of Engineering Photon Pioneers Center Osaka University

June 15, 2010 at JAICA Osaka

Contents

High Energy Density Sciences (Introduction)

High Energy Plasma Photonic Devices for Nonlinear Optics in Vacuum

High Energy Density Solid Matter

Contents

High Energy Density Sciences

High Energy Plasma Photonic Devices

control of high density (>MA) of charged particles like a light control control of intense light Focusing Plasma Mirror for Nonlinear Optics in Vacuum

High Energy Density Solid Matter

Nature Physics 2, 456 (2006)

Fast Focusing Optics < 1 can be Realized with a **Spheroid Plasma Mirror in a Power Laser System**

Probing of Vacuum with Photon

Key Technologies to realize Ex watt Laser

Simple Plane Wave can not Create the Polarization in Vacuum: Non symmetry is required.

Lagrangian density L (F,g) of electromagnetic fields in a vacuum is represented by the sum of the densities due to the classical L_{class} and QED L' (F,g) terms.

$$L(F,g) = L_{class} + \dot{L}(F,g)$$

= $L_{class} + L_1(F,g) + L_2(F,g) + \cdots$
= $L_{class} + \frac{\alpha(4F^2 + 7g^2)}{360\pi^2 E_{cr}^2} - \frac{\alpha F(8F^2 + 13g^2)}{630\pi^2 E_{cr}^4} + \cdots$
Nonlinear term

where $\alpha = e^2/\hbar c$ is fine-structure constant, $F = (\mathbf{B}^2 - \mathbf{E}^2)/2$, and $g = \mathbf{E} \cdot \mathbf{B}$ are the invariants of the electromagnetic field, and $E_{cr} = m^2 c^3/e\hbar$ is called critical electric field.

$$\mathbf{P} = \frac{1}{4\pi} \left[-\frac{\partial L'}{\partial F} \mathbf{E} + 2g \frac{\partial L'}{\partial G} \mathbf{B} \right], \quad \mathbf{M} = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right] \qquad G = g^2$$

$$F = \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \neq 0$$

$$g = \mathbf{E} \cdot \mathbf{B} \neq 0$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right] \qquad G = g^2$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$B = 2g^2$$

$$A = \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \neq 0$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$B = 2g^2$$

$$A = \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \neq 0$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$B = 2g^2$$

$$A = \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \neq 0$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$B = 2g^2$$

$$A = \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \neq 0$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$B = 2g^2$$

$$A = \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \neq 0$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$B = 2g^2$$

$$A = \frac{1}{2} \left(\mathbf{B}^2 - \mathbf{E}^2 \right) \neq 0$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{B} + 2g \frac{\partial L'}{\partial G} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A = \frac{1}{4\pi} \left[\frac{\partial L'}{\partial F} \mathbf{E} \right]$$

$$A$$

Description The 1st of the QED term is Taken into Account in the Calculation at less than the Schwinger Limit.

Lagrangian density L (F,g) of electromagnetic fields in a vacuum is represented by the sum of the density in classical L_{class} (F,g) and QED L' (F,g) terms.

$$L(F,g) = L_{class} + L'(F,g)$$

$$= L_{class} + L_1(F,g) + L_2(F,g) + \cdots$$
Nonlinear term
$$(\omega', 3\omega) \quad (\omega', 3\omega, 5\omega)$$

$$P_m(n\omega): \text{polarization for nw due to } L_m \text{ term}$$

$$\frac{P_1(3\omega)/P_1(\omega') \sim 10^{-1}}{P_2(\omega')/P_1(\omega') \leq 10^{-2}}$$

$$P_2(3\omega)/P_1(3\omega) \leq 10^{-2}$$

$$P_1(3\omega): M_1(3\omega)$$

Photon Number (ω: Optical Rotation and 3ω: harmonic generation) in Vacuum with High Fields

Wave equations taking account of the polarization and the magnetization due to the QED correction term in vacuum

$$\Box \mathbf{E} = -4\pi \nabla (\nabla \cdot \mathbf{P}) + \frac{4\pi}{c^2} \frac{\partial^2 \mathbf{P}}{\partial t^2} + \frac{4\pi}{c} \nabla \times \frac{\partial \mathbf{M}}{\partial t},$$
$$\Box \mathbf{B} = -\frac{4\pi}{c} \nabla \times \frac{\partial \mathbf{P}}{\partial t} - 4\pi \nabla \times (\nabla \times \mathbf{M}), \quad \Box = \nabla^2 - \frac{1}{c^2 \partial_t^2}$$

Photon Number N:

$$N \cong \frac{\tau}{\hbar\omega} \int \frac{c}{4\pi} \left| \left\langle \mathbf{E}_{g} \times \mathbf{B}_{g} \right\rangle \right| dS$$

Where E_g and B_g are solutions of the wave equations, τ the pulse duration of the square pulse. The area S is give by the spot size.

3^O Generated in Vacuum could be Observed with a Fast Focusing Optics and a 200PW Laser

Photon number of the ω light is counted in a focal depth, which is optically rotated in vacuum by 90 deg. Total number of 3 ω photons is counted taking account of the propagation in a focal depth.

Contents

High Energy Density Sciences

High Energy Plasma Photonic Devices for Nonlinear Optics in Vacuum

High Energy Density Solid Matter

- Super-Diamond & Solid Metallic Hydrogen
- Compression and Probe Techniques

Approach to Higher Pressures with Lower Temperature for Novel Matter States

Exploring of High Energy Density Solid States with High Power Lasers PhoPs Osaka 🛛

Spatial Scele: μ m - a few 100 μ m; Time Scale:fsec - a few nsec

and -

Exploring of High Energy Density Matter as New Material

Super Diamond, which is harder than Diamond

• Solid Metallic Hydrogen (quantum solid, superconductor)

Those material have never been observed on the earth, whereas the metallic hydrogen have been predicted end of 19th century.

High power laser can easily create high pressures of more than TPa. Only a plasma or liquid phase has been produced at such high pressures. Now we are approaching the solid phase in the TPas regime.

$\int_{Osaka} PhoPs = Ph$

Submitted to PRL

Re-shock with New High Impedance Material (GGG) PhoPs could Access Super-Diamond i.e. >TPa with < 10,000 K

Diamond was re-compressed with an higher impedance material (GGG) than diamond to be > TPa, for the fist time.

Super-Terra on the Earth

Super-Terra ex GJ 876d M = 7.5M_{Earth}

Rivera et al. 2005, Valencia et al. 2007

Artist's concept of an extra-solar planet moving behind its parent star. Credit: NASA/JPL-Caltech/R. Hurt (SSC)

Massive extrasolar Earth-like planet (GJ 876d) CMB P =1100 GPa T = 5000K Center P = 3400 GPa T = 7000 K New dense structures ? Silicates or oxides metallization ?

Structure and physical properties of iron and alloys

Diamond cores

2 Ways for Super Diamond : Re-shock comp. and Equilibrium/non equilibrium hybrid comp.

-1000 -2000

2000 4000

Time (ps)

NEC: Non Equilibrium Compression for Quenching (Metallic Si)

3 step Hybrid Compression to realize solid Metallic H **5** static-Isentropic dynamic-non equilibrium comp.

2. Isentropic dynamic comp.

Re shock comp.

Phys. Rev. Lett. (2006).

Tailored pulse laser and Ramp comp.

Shot 33 (10 µm)

uf 90 Shot 31 (24 μm)

J. Phys. (2010).

3. Non Equilibrium Comp. for Quenching

Demonstration of Quenching of Metallic Si

Investigation of Phase Transition under High Pressure with Micro-Macro Dynamic Probing

Dynamic Probing of Macro Phenomena

- Dynamic shadow imaging of a compressed region with a pulse x-ray and proton beam using laser and PPD

shock putter

∆t=11 ns

Phys. Plasmas 16, 033101 (2009)

Dynamic Probing of Micro Phenomena in Macroscopic.

• Lattice structure, Grain size, Electron distribution function from XRD, WAXS and SAXS using radiation sources with laser and PPD

Dynamic Direct Probing of Micro Phenomena with Super TEM (under deveopling)

(DyTEMSHI: Dynamic Transition Electron Microscope Innovation System)

Large Scale TEM (**MeV** e-beam)

Small Dynamic TEM (a few 10 nm) + α (high speed phenomena: a few 10fs) + β (random transient phenomena)

Creation of High Energy Density New Material with Laser-Dynamic Compression

Summary

Two topics has been presented as a front edge of the high energy density sciences with high power lasers

- Nonlinear optics in vacuum using plasma photonic devices such as a plasma focusing mirror.
 - Study on nonlinear optics in vacuum would be realized with a few 100PW laser and plasma focusing mirror in 10 years.
- High Energy Density Solid Material such as super diamond and solid metallic H, which is realized in high pressure (Tera Pa) at relatively low temp. (< a few1000K).
 - We have all technologies such as compression, quenching and probing to realize the new material.
 - In 10 years, we are approaching the solid metallic hydrogen or the ultimate metal with high power laser.