

Particle identification using Ring Cherenkov detector technology at COMPASS

Miroslav Finger

Charles University in Prague, Czech Republic Faculty of Mathematics and Physics

1. COMPASS Experiment at SPS CERN

2. Ring Imaging CHerenkov Detectors Basics

3. COMPASS RICH-1 Detector for Particle Identification 2009/2010

4. Conclusions

M. Finger

COMPASS Experiment at SPS CERN

Prague, December 19, 2006

THE COMPASS SPECTROMETER

COMPASS: Setup 2008 and beyond

Competition in the world and COMPASS role

COMPASS at CERN-SPS

High energy muon beam 100/190 GeV

 μ + or μ change once per day polar(μ +)=-0.80 polar(μ -)=+0.80

 $2.10^{8} \mu$ per SPS cycle

if intensity × 2, Q² range up to 11 GeV² after 2010, which improvements on the muon line **?**

Physics program of COMPASS - 1

- Experiments with muon beam
 - $-\Delta G/G$
 - $-g_1$
 - Transverse spin effects
 - Flavor decomposition of spin distribution functions
 - Vector meson production
 - Spin transfer in Λ-hyperon production

- Experiments with hadron beams
 - Pion and Kaon polarizabilities
 - Diffractive production of exotic states
 - Search for glueballs
 - Light meson spectroscopy
 - Production of double charmed baryons

RIng Imaging CHerenkov Detectors

Basics

Prague, December 19, 2006

A charged particle with a velocity *v* larger than the velocity of light in a medium emits light.

Pavel A. Cherenkov, Ilja M. Frank, Igor Y. Tamm Nobel Price 1958

Fundamentals of Ring Imaging Recent Developments Summary	
Basic Formulas	

Threshold: $\beta_{\text{thres}} = \frac{V_{\text{thres}}}{c} = \frac{1}{n}$ $\gamma_{\text{thres}} = \frac{n}{\sqrt{n^2 - 1}}$ Angle of emission: $\cos \theta_c = \frac{1}{\beta n} = \frac{1}{\frac{V}{c}n}$ Number of photons: $\frac{d^2 N}{dE dl} = \frac{\alpha Z^2}{\hbar c} \left(1 - \frac{1}{(\beta n)^2}\right) = \frac{\alpha Z^2}{\hbar c} \sin^2 \theta_c$ $\frac{d^2 N}{d\lambda dl} = \frac{2\pi \alpha Z^2}{\lambda^2} \sin^2 \theta_c$

化白色化晶色化合色化合色化 医上颌反应

4/50

Fundamentals of Ring Imaging Recent Developments

Summery

Besics

Reality

Ring Imaging Cherenkov – The Basics

$$\cos\theta_{c} = \frac{1}{\beta \cdot n} \quad r = F \cdot \tan\theta_{c} = \frac{R}{2} \cdot \tan\theta_{c} \quad N_{ph} = N_{0} \cdot L \cdot \sin^{2}\theta_{c}$$

- θ_c: Cherenkov angle
- β: velocity
- n: refractive index
- r: Radius of ring on focal surface
- R: Radius of curvature of spherical mirror(s)
- F: Focal length (F = R/2)
- L: Radiator length (usually L = F)

Parallel particles have the same ring image

インカ 日本

$$r = F \tan \Theta_c \approx \frac{R}{2} \sqrt{2 - \frac{2}{n} \sqrt{1 + \frac{m^2 c^2}{p^2}}}$$

Knowing R and n, and measuring r, we can identify a particle of mass m.

$$\Theta_c \Delta \Theta_c = \frac{m_1^2 - m_2^2}{2p^2}$$

Usually (production experiments): Most difficult to separate pions and kaons μ and e are identiffied by other means But really: Most difficult is μ - π , key features of Valuatity Spectrometer (CKM, NAS2)

Velocity Spectrometer (CKM, NA62)

网络门

化白色化白色化合金的 化氯化合

Summary

A RICH Detector is as simple as

- a box
- some mirrors
- and a few phototubes?

NO!

法自己法国法法法法法法法法 医小磷酸钙

20/59

Short History of RICHes in Experiments

First Generation: Beginning of 1980's. Examples: E605, Omega (WA69, WA82), E665. Second Generation: End-of 80's beginning of 90's. Examples: Upgraded Omega (WA89, WA94), Delphi, SLD–GRID, CERES, SPHINX. Third Generation: Mid-End 90's Examples: SELEX, Hermes, Hera-B. Fourth Generation: BaBar–DIRC, PHENIX, CLEO–III, COMPASS, New Generation: LHCb, ALICE, BTeV, CKM,

Realize

Reality

Future: NA62, Panda, WASA, CBM,

网络虹管

21/50

.

Fundamentals of Ring Imaging Recent Developments Summary

Basics Reality

How to select n?

- Usually: RICH after magnetic field
 - ⇒ Minimum Momentum is π[±] Threshold
- But also reverse: CERES RICH
- Use pressure or mixture
- Carefull with sensitive range: Chromatic Dispersion and absorption.

Material	<i>n</i> – 1	Three
Diamond	1.42	1.10
ZnS (Ag)	1.37	1.10
Lead Fluoride	0.80	1.20
Glass	0.46-0.75	1.22-1
Water	0.33	1.52
Aerogel	0.025-0.075	4.5-2.
CO ₂ (STP)	430 × 10 ⁻⁶	34.1
N ₂ (STP)	300×10^{-6}	45
Ne (STP)	65 × 10 ⁻⁶	90
He (STP)	33 × 10 ⁻⁶	123

法法法法国法法法法法法法法 医小鸡肉的

Fundamentals of Ring Imaging Recent Developments Summary

Detection of internally reflected Cherenkov light

011011

-100

20.00

COMPASS RICH-1 Detector for Particle Identification 2009/2010

Prague, December 19, 2006

COMPASS RICH Detector

RICH-1 *Ring Imaging Cherenkov*

- 80 m³ (3 m C₄F₁₀)
- 116 VUV mirrors (3.3 m focal length)
- 5.3 m² VUV detectors
 - MWPC Csl photon-sensitive cathodes
 - 8x8 mm² pads
- 84k channels of analog read-out

Photon detection

5.3 m² MWPCs

- **16 Csl Photocathodes**
- 84,000 analog readout channels M. Finger Osaka, A

single photon: ring: photons/ring $3\sigma \pi$ /K sep. σ =1.2 mrad σ =0.4 mrad n ~14 up to 40 GeV/c

COMPASS

RICH-1 Mirror Wall

The COMPASS RICH detector (2003-2004, before upgrade)

- radiator gas:
- mirror:
- photon-detectors:
- $C_4 F_{10}$, good transparency > 160 nm, low chromaticity 20 m² surface, VUV reflectance (160-210 nm) > 80%
- s: Multi Wire Proportional Chamber, total surface 5.3 m²
- angular acceptance: ± 250 mrad horizontal, ± 200 mrad vertical
- read-out:

83.000 channels (pixels)

	without PID	π+ π-	π + K-	Κ+ π-	K+ K-
total	5.3*10 ⁶	3.7*10 ⁶	2.4*10 ⁵	3.0*10 ⁵	8.7*10 ⁴

The upgrade project for 2006 data taking

Optical system for upgrade RICH-1 detector

Hamamatsu R7600-03-M16 photomultiplier

R7600-03-M16 Spectral Response Characteristics

borosilicate glass window

Time resolution is useful for correctly assigning hits to rings:

Half upgraded detector- from inside

576 telescopes made of silica lenses

Telescope system consisting of 2 lenses:

- Purpose: Focussing Cherenkov photons on MAPMTs (factor 7)
- UV transparent quartz lenses
- large geometrical acceptance
- minimum image distortion
- optimised by Zemax simulation

Upgraded RICH resolution

Performances of upgraded RICH detector

Excellent performances:

- N_{ph}/ring (ß≈1) > 60 before upgrade: 14
- time resolution < 1 ns before upgrade: 3 μs
- $\sigma_{ring} \approx 0.3 \text{ mrad}$ (ß \approx 1) before upgrade: 0.6mrad
- N_{ph}/ring ≈ 50 (ß ≈ 1) before: 14
- $2\sigma \pi/K$ separation at $p_h > 55 \text{ GeV/c}$ before upgrade: 43 GeV/c
- excellent suppression of background from μ halo,
- performances as expected (and better)

mirrors and alignment

21 m², 116 mirrors

radius: 6.6 m

angular regulation screws

measurement of mirror alignment via laser autocollimation

the vessel and the mirror support

Large and accurate mechanics light front and rear windows

The CsI photocathodes

International Workshop on Ring Imaging Cherenkov Detectors

Fulvio TESSAROTTO

There is need of new technology

to overcome recent limits – fight ion bombardment and photon feedback

Possible solution – closed geometries

Chechik et al. NIM A535 (2004) 303 C. Shalem et al. NIM A558 (2006) 475 & NIM A558 (2006) 468

F. Sauli, NIM A386(1997)531

MultiGEM's: ion blocking + high GAIN

Examples of ion blocking schemes from literature

- Similar schemes can be adopted with THGEM

Electrons

Perspectives

Short term plans:

- optimize the parameters of the THGEM with photoconverting Csl layer to achieve maximum photoelectron collection efficiency
- optimize the parameters for the (double) THGEM to be used for the amplification of the signal to provide large and stable gain
- produce a set 600 x 600 mm2 THGEMs and assemble them with stesalite spacer frames into first complete "full size" prototype chamber

Possible medium term project:

- Upgrade of COMPASS RICH (~4m2) with the new photon detectors in case the COMPASS Collaboration decides for it.

Longer term dream:

- find a configuration to reduce the ion back-flow down to <10-5 and operate this large area detectors with visible photoconverter

RIng Imaging CHerenkov Detectors

Conclusions

Prague, December 19, 2006

COMPASS RICH-1

is a large gaseous RICH

with two kind of photon detectors

providing:

hadron PID from 3 to 60 GeV/c

acceptance: H: 500 mrad V: 400 mrad

trigger rates: up to ~100 KHz beam rates up to ~10⁸ Hz

material in the beam region: 2.4% $X_{\rm o}$ material in the acceptance: 22% $X_{\rm o}$

* detector designed in 1996
*in operation since 2002
*upgraded in 2006

total investment: ~4 M €

The main components

- Al vessel (80 m³ C₄F₁₀, 100 m of O-rings) with light windows
- Spherical UV mirrors (21 m², split in two halves, 116 mirrors)
- Light beam pipe filled with He
- 16 fused silica windows (600 mm x 600 mm x 5 mm)
- 8 MWPC's with CsI- coated photocathodes (4.3 m²)
- 62 k analog r/o channels: APV + GESSICA
- 576 MAPMT's with individual fused silica lens telescopes
- 9.2 k TDC channels: MAD + DREISAM + F1
- A complex gas circulation and filtering system

RICH PID information in Λ analysis

The keys of the success

- A strong physics case
- A dedicated, highly motivated team
- A constant support from the Institutes and the Experiment

P. Abbon^k, M. Alexeev^{a,1}, H. Angererⁱ, R. Birsa^o, P. Bordalo^{g,2}, F. Bradamanteⁿ, A. Bressanⁿ, M. Chiosso¹, P. Cilibertiⁿ, M. Colantoni^m, T. Dafni^k, S. Dalla Torre^{o,*}, E. Delagnes^k, O. Denisov^m, H. Deschamps^k, V. Diaz^o, N. Dibiase¹, V. Duicⁿ, W. Eyrich^d, A. Ferrero¹, M. Finger^j, M. Finger Jr.^j, H. Fischer^e, S. Gerassimovⁱ, M. Giorgiⁿ, B. Gobbo^o, R. Hagemann^e, D. von Harrach^h, F.H. Heinsius^e, R. Joosten^b, B. Ketzerⁱ, V.N. Kolosov^{c,3}, K. Königsmann^e, I. Konorovⁱ, D. Kramer^{c,f}, F. Kunne^k, A. Lehmann^d, S. Levoratoⁿ, A. Maggiora^m, A. Magnon^k, A. Mannⁱ, A. Martinⁿ, G. Menon^o, A. Mutter^e, O. Nähle^b, F. Nerling^e, D. Neyret^k, D. Panzieri^a, S. Paulⁱ, G. Pesaroⁿ, C. Pizzolotto^d, J. Polak^{f,o}, P. Rebourgeard^k, F. Robinet^k, E. Rocco¹, P. Schiavonⁿ, C. Schill^e, P. Schoenmeier^d, W. Schröder^d, L. Silva^g, M. Slunecka^j, F. Sozziⁿ, L. Steiger^j, M. Sulc^f, M. Svec^f, S. Takekawaⁿ, F. Tessarotto^o, A. Teufel^d, H. Wollny^e

Thank You for Your Attention

Prague, December 19, 2006